ggg
This commit is contained in:
parent
e020818196
commit
111683e26d
@ -173,20 +173,30 @@ This section outlines the full workflow for using the CNC machine, from preparat
|
|||||||
|
|
||||||
#### 3. Toolpaths: Cut
|
#### 3. Toolpaths: Cut
|
||||||
|
|
||||||
- Choose **2D Profile Toolpath**.
|
- Choose **Profile Toolpath**.
|
||||||
- Set:
|
- Set:
|
||||||
- **Start Depth:** 0 mm
|
- **Start Depth:** 0 mm
|
||||||
- **Cut Depth:** 13 mm (12 mm material + 1 mm into sacrificial sheet)
|
- **Cut Depth:** 13 mm (12 mm material + 1 mm into sacrificial sheet)
|
||||||
- Select **Outside/Right** for vector machining to preserve size.
|
|
||||||
- Tool Settings (6 mm bit):
|
- Tool Settings (6 mm bit):
|
||||||
- Spindle Speed: 8000 RPM
|
- Spindle Speed: 8000 RPM
|
||||||
- Feed Rate: 80 in/min
|
- Feed Rate: 80 in/min
|
||||||
- Plunge Rate: 15 in/min
|
- Plunge Rate: 15 in/min
|
||||||
- Click **Calculate**, then **OK** to confirm warnings.
|
- Specify the Number of Passes:
|
||||||
|
- Press "Edit Passes"
|
||||||
|
- Number of Passes: 2
|
||||||
|
- First Pass Depth: 6.5mm
|
||||||
|
- Second Pass Depth: 13mm
|
||||||
|
- Specify Machine Vectors:
|
||||||
|
- Select **Outside/Right** for vector machining to preserve size.
|
||||||
|
- Select **Inside/Left** for
|
||||||
|
- Select **On** for
|
||||||
|
- Tabs: ++++++++
|
||||||
|
|
||||||
|
- Click **Calculate**, then read the warnings, if it is within your expectations click **OK** to confirm.
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
#### 4. Toolpaths: Pocket and Tabs
|
#### 4. Toolpaths: Pocket
|
||||||
|
|
||||||
- **Pocket Toolpath:**
|
- **Pocket Toolpath:**
|
||||||
- Used to hollow out an internal region.
|
- Used to hollow out an internal region.
|
||||||
@ -202,6 +212,13 @@ This section outlines the full workflow for using the CNC machine, from preparat
|
|||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
|
#### 5. Preview Toolpaths
|
||||||
|
|
||||||
|
Preview Visible Toolpaths
|
||||||
|
Click on the 3D View tab
|
||||||
|
Reset Preview
|
||||||
|
Preview Visible Toolpaths
|
||||||
|
|
||||||
#### 5. ShopBot 3 Setup
|
#### 5. ShopBot 3 Setup
|
||||||
|
|
||||||
- Open **ShopBot 3** software.
|
- Open **ShopBot 3** software.
|
||||||
@ -216,11 +233,11 @@ This section outlines the full workflow for using the CNC machine, from preparat
|
|||||||
|
|
||||||
#### 6. Z-Axis Calibration
|
#### 6. Z-Axis Calibration
|
||||||
|
|
||||||
- Clip the wire to the drill bit.
|
- Clip the wire to the collet nut or the spindle body of the CNC machine.
|
||||||
- Place the **metal calibration plate** on the surface of the sheet.
|
- Place the **metal calibration plate** on the surface of the sheet.
|
||||||
- Run the **Z-zeroing command** (machine lowers bit to touch the plate).
|
- Run the **Z-zeroing command** (machine lowers bit to touch the plate).
|
||||||
- System detects contact and sets Z = 0.
|
- System detects contact and sets Z = 0.
|
||||||
- Remove the clip and plate after calibration.
|
- After calibration, remove the clip and plate, then return them to their original location with the clip still attached to the plate.This ensures smooth CNC operation.
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
|
@ -37,6 +37,8 @@ To clearly illustrate the internal mechanics, structural design, and assembly st
|
|||||||
- Included Media
|
- Included Media
|
||||||
- **Assembly Video** – starts with an exploded view and step-by-step buildup
|
- **Assembly Video** – starts with an exploded view and step-by-step buildup
|
||||||
|
|
||||||
|
<iframe width="560" height="315" src="https://www.youtube.com/embed/ylcnBYmR19A?si=1Pg3t_qRczJDjIow" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>
|
||||||
|
|
||||||
<iframe src="https://1drv.ms/v/c/62d760a9f409a919/IQSXz1cAg1KlSb5fDzi06m4CAZDB0oQq2RIVgFQe7C54sDk" width="640" height="480" frameborder="0" scrolling="no" allow="autoplay" allowfullscreen></iframe>
|
<iframe src="https://1drv.ms/v/c/62d760a9f409a919/IQSXz1cAg1KlSb5fDzi06m4CAZDB0oQq2RIVgFQe7C54sDk" width="640" height="480" frameborder="0" scrolling="no" allow="autoplay" allowfullscreen></iframe>
|
||||||
|
|
||||||
- **Disassembly Video** – shows teardown process in reverse order
|
- **Disassembly Video** – shows teardown process in reverse order
|
||||||
|
342
Laser Cutting.md
342
Laser Cutting.md
@ -1,266 +1,136 @@
|
|||||||
# Two-Disc Cycloidal Gearbox Design
|
# 🔲 How to Use the Laser Cutting Machine
|
||||||
|
|
||||||
#### 1. Project Description
|
*(This page provides step-by-step instructions for students on how to prepare and operate the laser cutter. Insert images where noted to enhance clarity and guidance.)*
|
||||||
The two-disc cycloidal gearbox is designed to convert high-speed, low-torque input from a stepper motor into low-speed, high-torque output. It utilizes two synchronized cycloidal discs that rotate in opposite phases, interacting with drive pins to transmit motion to an output shaft.
|
|
||||||
|
|
||||||
This configuration minimizes backlash and distributes load across multiple contact points, offering smooth and powerful transmission. The system is fully enclosed and features multiple mounting options for external attachments.
|
|
||||||
|
|
||||||
#### 2. Application & Use Cases
|
|
||||||
|
|
||||||
##### Applications
|
|
||||||
- Robotics joints and arms
|
|
||||||
- CNC rotary tables
|
|
||||||
- Precision camera mounts
|
|
||||||
- Automated actuators
|
|
||||||
- Small-scale industrial machines
|
|
||||||
|
|
||||||
##### How to Use
|
|
||||||
- Mount the gearbox base to your motor using the provided holes.
|
|
||||||
|
|
||||||
- Connect the NEMA-17 motor shaft to the input via the motor shaft connector.
|
|
||||||
|
|
||||||
- Attach your load or mechanism to the output shaft area.
|
|
||||||
|
|
||||||
- Power the motor through a driver board and microcontroller (e.g., Arduino).
|
|
||||||
|
|
||||||
- Control the motion using programmed step sequences.
|
|
||||||
|
|
||||||
- Ensure lubrication (grease) between the discs and drive pins for smoother performance and longer lifespan.
|
|
||||||
|
|
||||||
#### 3. Engineering Drawings
|
|
||||||
|
|
||||||
##### Description
|
|
||||||
The design is a compact, scalable two-disc cycloidal gearbox intended for high-torque, low-speed applications. Its parametric structure makes it easy to adapt in size and material. The current prototype has a 90 mm diameter and 54 mm height.
|
|
||||||
|
|
||||||
To clearly illustrate the internal mechanics, structural design, and assembly steps, the following visuals are provided:
|
|
||||||
|
|
||||||
- Included Media
|
|
||||||
- Assembly Video – starts with an exploded view and step-by-step buildup
|
|
||||||
|
|
||||||
<p align="center">
|
|
||||||
<img src="images/insert.jpg" style="border: 2px solid black;" />
|
|
||||||
</p>
|
|
||||||
|
|
||||||
- Disassembly Video – shows teardown process in reverse order
|
|
||||||
|
|
||||||
<p align="center">
|
|
||||||
<img src="images/insert.jpg" style="border: 2px solid black;" />
|
|
||||||
</p>
|
|
||||||
|
|
||||||
- Transparent Body Image – reveals internal components without hiding the casing
|
|
||||||
|
|
||||||
<p align="center">
|
|
||||||
<img src="images/Transparent.png" style="border: 2px solid black;" />
|
|
||||||
</p>
|
|
||||||
|
|
||||||
- Visual Assets & Drawings
|
|
||||||
- Engineering Drawing Sheet
|
|
||||||
|
|
||||||
<p align="center">
|
|
||||||
<img src="images/2.png" style="border: 2px solid black;" />
|
|
||||||
</p>
|
|
||||||
|
|
||||||
- Cross-Sectional Analysis (x2)
|
|
||||||
|
|
||||||
<p align="center">
|
|
||||||
<img src="images/SubSectionAnalysis.png" style="border: 2px solid black;" />
|
|
||||||
</p>
|
|
||||||
|
|
||||||
<p align="center">
|
|
||||||
<img src="images/sectionanalysis2.png" style="border: 2px solid black;" />
|
|
||||||
</p>
|
|
||||||
|
|
||||||
- Isometric View
|
|
||||||
|
|
||||||
<p align="center">
|
|
||||||
<img src="images/1.png" style="border: 2px solid black;" />
|
|
||||||
</p>
|
|
||||||
|
|
||||||
#### 4. List of Materials & Components
|
|
||||||
|
|
||||||
- ##### Standard Components
|
|
||||||
|
|
||||||
| Part | Quantity | Approx. Size |
|
|
||||||
| ------------- | -------- | -------------------------------------------------- |
|
|
||||||
| Bearing | 2 | Ø65 mm (outer) × Ø50 mm (inner) × 7 mm (thickness) |
|
|
||||||
| Bearing | 4 | Ø32 mm (outer) × Ø20 mm (inner) × 7 mm (thickness) |
|
|
||||||
| Stepper Motor | 1 | NEMA-17 |
|
|
||||||
|
|
||||||
- ##### Bolts & Nuts (*with available size approximations*)
|
|
||||||
|
|
||||||
Note: If a bolt is slightly longer than needed, it can be trimmed using a saw. Nut sizes should fit snugly but not too tight.
|
|
||||||
|
|
||||||
1. (A) Connecting Base to Base Cover
|
|
||||||
- 7 × Flat Head Machine Screws (Type B)
|
|
||||||
- Size: M4 × 45 mm
|
|
||||||
- Head Diameter: ~7.5 mm
|
|
||||||
- 7 × M4 Hex Nuts
|
|
||||||
- Edge-to-Edge: ~6.9 mm
|
|
||||||
- Thickness: ~3.2 mm
|
|
||||||
|
|
||||||
2. (B) Drive Pins Area (Replaces 5 mm Pins)
|
|
||||||
- 4 × M3 × 50 mm Bolts (hex or socket head)
|
|
||||||
- Head Diameter: ~5.5 mm
|
|
||||||
- 4 × M3 Hex Nuts
|
|
||||||
- Edge-to-Edge: ~5.5 mm
|
|
||||||
- Thickness: ~2.4 mm
|
|
||||||
|
|
||||||
3. (C) Mounting Points on Top of the Gearbox
|
|
||||||
- 7 × M4 Hex Nuts
|
|
||||||
- Edge-to-Edge: ~6.9 mm
|
|
||||||
- Thickness: ~3.2 mm
|
|
||||||
|
|
||||||
4. (D) Shaft Connector
|
|
||||||
- 2 × M3 × 40 mm Bolts
|
|
||||||
- Head Diameter: ~5.5 mm
|
|
||||||
- 2 × M3 Hex Nuts
|
|
||||||
- Edge-to-Edge: ~5.5 mm
|
|
||||||
- Thickness: ~2.4 mm
|
|
||||||
|
|
||||||
5. (E) NEMA-17 Shaft Connector
|
|
||||||
- 1 × M3 × 6 mm Bolt (may require sanding)
|
|
||||||
- Head Diameter: ~5.5 mm
|
|
||||||
- 1 × M3 Hex Nut
|
|
||||||
- Edge-to-Edge: ~5.5 mm
|
|
||||||
- Thickness: ~2.4 mm
|
|
||||||
|
|
||||||
6. (F) NEMA-17 Connector
|
|
||||||
- 4 × M3 × 15 mm Bolts
|
|
||||||
- Head Diameter: ~5 mm
|
|
||||||
|
|
||||||
- ##### 3D-Printed Components
|
|
||||||
- Material: PLA (tested), PETG (recommended for durability)
|
|
||||||
- Parts: Housing, base cover, discs, shaft connectors, output caps, circlips
|
|
||||||
- Infill: Suggested 40% or more for torque applications
|
|
||||||
|
|
||||||
#### 5. Cycloidal Drive Strength Analysis
|
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
##### **1. Motor Output Torque**
|
#### 1️⃣ Preparing the File
|
||||||
|
**Software: SolidWorks / Illustrator / CorelDraw / etc.**
|
||||||
|
|
||||||
* **Motor Stall Torque**: 0.45 Nm
|
- Export the design as a **DXF (.dxf)** file.
|
||||||
* **Gear Ratio**: 21:1
|
- Send the file to the designated **email account** (e.g., instructor's Gmail or lab email).
|
||||||
* **Estimated Efficiency**: 85%
|
- On the laser cutting computer, **download** the file and **import it into RDWorks**.
|
||||||
|
|
||||||
$$
|
|
||||||
\text{Output Torque} = 0.45 \times 21 \times 0.85 = \boxed{8.03 \, \text{Nm}}
|
|
||||||
$$
|
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
##### **2. Load Handling Capability (Based on PLA Disc)**
|
#### 2️⃣ Setting Up in RDWorks
|
||||||
|
📌 *Insert screenshot of RDWorks interface here*
|
||||||
|
|
||||||
###### PLA Parameters:
|
- **Arrange the parts** on the virtual sheet using directional arrow buttons.
|
||||||
|
- **Assign colors** to each part depending on whether it’s for cutting, engraving, or marking.
|
||||||
|
- **Double-click the selected color** from the left color bar to adjust settings:
|
||||||
|
- Input appropriate **Speed** and **Power** values based on material type and thickness.
|
||||||
|
- Alternatively, use **Parameter Library** to select preconfigured material profiles.
|
||||||
|
|
||||||
* **Yield Strength of PLA**: 50 MPa
|
✅ After setting all values, click **“Download”** to transfer the file to the machine.
|
||||||
* **Safety Factor**: 3 → Allowable stress = 16.7 MPa
|
|
||||||
* **Contact Area (per lobe)**: 5 mm²
|
|
||||||
* **Lobes in contact**: 4
|
|
||||||
* **Radius from center to lobe force point**: 33.5 mm = 0.0335 m
|
|
||||||
* **Infill Density**: 25%
|
|
||||||
|
|
||||||
###### Calculations:
|
|
||||||
|
|
||||||
* **Force per lobe**:
|
|
||||||
|
|
||||||
$$
|
|
||||||
F_{\text{lobe}} = 16.7 \times 10^6 \times 5 \times 10^{-6} = 83.5 \, \text{N}
|
|
||||||
$$
|
|
||||||
|
|
||||||
* **Total force from 4 lobes**:
|
|
||||||
|
|
||||||
$$
|
|
||||||
F_{\text{total}} = 4 \times 83.5 = 334 \, \text{N}
|
|
||||||
$$
|
|
||||||
|
|
||||||
* **Torque handling at 33.5 mm radius**:
|
|
||||||
|
|
||||||
$$
|
|
||||||
\tau = 334 \times 0.0335 = 11.2 \, \text{Nm}
|
|
||||||
$$
|
|
||||||
|
|
||||||
* **Account for 25% infill**:
|
|
||||||
|
|
||||||
$$
|
|
||||||
\tau_{\text{safe}} = 11.2 \times 0.25 = \boxed{2.8 \, \text{Nm}}
|
|
||||||
$$
|
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
##### **3. Drive Pin Strength (Bolts with PLA Sleeves)**
|
#### 3️⃣ Operating the Laser Cutter
|
||||||
|
📌 *Insert image of laser cutter with labeled parts here*
|
||||||
|
|
||||||
###### Assumption:
|
1. **Turn on** the machine and main power switch.
|
||||||
|
2. **Insert the material** (e.g., 3mm plywood, 6mm acrylic).
|
||||||
* Bolts used instead of precision 5 mm mild steel pins
|
3. Flip the **light knob** to activate internal lighting.
|
||||||
* Outer diameter maintained at **5 mm** using **PLA sleeves**
|
4. On the machine panel:
|
||||||
* Inner bolt shaft assumed 4 mm (typical M4 bolt shank)
|
- Press **“File”** and select the file
|
||||||
* Steel Yield Strength: 260 MPa
|
- Press **“Enter”** to load it into memory
|
||||||
|
5. Use **arrow keys** to move the laser head to the desired starting point.
|
||||||
- **Cross-sectional Area (4 mm bolt)**:
|
6. Adjust the **Z-axis** (height) of the laser:
|
||||||
|
- Use a **spacer tool** (e.g., LEGO brick) for low thickness.
|
||||||
$$
|
- For thicker materials, keep around **2mm distance** between the laser head and the material.
|
||||||
A = \frac{\pi D^2}{4} = \frac{\pi \cdot 4^2}{4} = 12.57 \, \text{mm}^2
|
7. Press **“Origin”** to set the starting position.
|
||||||
$$
|
8. Press **“Frame”** to preview the cutting boundary.
|
||||||
|
9. Once confirmed, press **“Start”** to begin cutting.
|
||||||
- **Force per bolt**:
|
|
||||||
|
|
||||||
$$
|
|
||||||
F_{\text{bolt}} = 260 \times 12.57 = 3,268.2 \, \text{N}
|
|
||||||
$$
|
|
||||||
|
|
||||||
- **Total force (4 bolts)**:
|
|
||||||
|
|
||||||
$$
|
|
||||||
F_{\text{total}} = 4 \times 3,268.2 = 13,072.8 \, \text{N}
|
|
||||||
$$
|
|
||||||
|
|
||||||
- **Torque capacity**:
|
|
||||||
|
|
||||||
$$
|
|
||||||
\tau = 13,072.8 \times 0.0335 = \boxed{437.9 \, \text{Nm}} \quad \text{(Safe✅)}
|
|
||||||
$$
|
|
||||||
|
|
||||||
> Note: **PLA sleeves** do not contribute significantly to strength — they act as spacers or guides. Only **steel bolts** are load-bearing.
|
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
##### **4. Max Load at 50 mm Arm**
|
#### 🛡️ Safety & Efficiency Tips
|
||||||
|
📌 *Insert image of safety guidelines and PPE here*
|
||||||
|
|
||||||
$$
|
- Always wear **safety goggles** during operation.
|
||||||
F = \frac{\tau_{\text{safe}}}{r} = \frac{2.8}{0.05} = 56 \, \text{N}
|
- Never leave the machine **unattended** while it's running.
|
||||||
$$
|
- Use **tape or weights** to hold down curled or uneven sheets.
|
||||||
|
- Use **Frame preview** to avoid cutting beyond the material area.
|
||||||
$$
|
- **Organize parts efficiently** on the sheet to reduce material waste.
|
||||||
\text{Mass} = \frac{56}{9.81} = \boxed{5.7 \, \text{kg}}
|
|
||||||
$$
|
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
##### Final Summary Table
|
#### ✍️ Engraving Notes
|
||||||
|
|
||||||
| Category | Value | Safe? |
|
- Use **lower power and higher speed** for engraving.
|
||||||
| --------------------------- | -------- | ------------------------ |
|
- Perform a **small test area** first to avoid burning the material.
|
||||||
| Motor Stall Torque | 0.45 Nm | ✅ |
|
- Ensure the surface is flat and clean for consistent engraving quality.
|
||||||
| Output Torque | 8.03 Nm | ❌ Exceeds PLA safe limit |
|
|
||||||
| PLA Torque Limit | 2.8 Nm | ✅ |
|
|
||||||
| Bolt + PLA Pin Torque Limit | 437.9 Nm | ✅ (way overbuilt) |
|
|
||||||
| Max Load (at 50 mm arm) | 5.7 kg | ✅ |
|
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
##### Final Conclusion
|
#### 🧪 Cutting Efficiency Test Example
|
||||||
|
📌 *Insert photo of test squares with labels*
|
||||||
|
|
||||||
The **cycloidal drive system is likely to fail at the PLA disc lobes under full output torque**, especially if printed with only **25% infill**. Although the **bolts (with PLA sleeves)** acting as drive pins are structurally sufficient, the **PLA disc is the mechanical weak point**.
|
**Objective:**
|
||||||
|
Determine the optimal speed and power settings for clean cuts on 2.45mm plywood without manual force.
|
||||||
|
|
||||||
##### If tested:
|
---
|
||||||
|
|
||||||
* The drive **will function under light loads (below \~5.7 kg at 50 mm arm)**.
|
**Test Parameters:**
|
||||||
* Under full load or high-torque demand, **plastic deformation or cracking is expected at the lobes**.
|
|
||||||
* The bolts will hold without issue, but **localized PLA wear or failure around the lobes and sleeves is likely.**
|
|
||||||
|
|
||||||
##### Recommendations:
|
- **Speeds (mm/s):** 15, 20, 30, 40
|
||||||
|
- **Powers (%):** 15, 27, 40, 52, 65
|
||||||
|
|
||||||
* Increase **infill to at least 75%** or use a stronger material like **PETG**.
|
⚠️ *Do not exceed 70% power. It may damage the machine.*
|
||||||
* Consider **fillet reinforcement** around lobes to distribute stress.
|
|
||||||
* Reduce gear ratio or torque output if high load isn't needed.
|
---
|
||||||
|
|
||||||
|
**Successful Cutting Combinations:**
|
||||||
|
|
||||||
|
| Speed (mm/s) | Power (%) |
|
||||||
|
|--------------|------------|
|
||||||
|
| 15 | 40 |
|
||||||
|
| 20 | 30 |
|
||||||
|
| 10 | 52 |
|
||||||
|
| 20 | 52 |
|
||||||
|
| 30 | 52 |
|
||||||
|
| 15 | 65 |
|
||||||
|
| 20 | 65 |
|
||||||
|
| 30 | 65 |
|
||||||
|
| 40 | 65 |
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
**Conclusion:**
|
||||||
|
Higher power settings (52–65%) combined with moderate to low speeds produced clean cuts. This combination allows the laser sufficient energy and time to fully penetrate the material without excessive scorching.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
#### 🔍 Focal Point Experiment
|
||||||
|
📌 *Insert photo of inclined test setup with cuts*
|
||||||
|
|
||||||
|
**Objective:**
|
||||||
|
Understand how varying the laser's focal height (Z-axis) affects the quality of cuts.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
**Setup:**
|
||||||
|
|
||||||
|
- A wooden plate was placed at an **inclined angle** on the cutting bed.
|
||||||
|
- The laser cut along the slope, testing multiple focal heights.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
**Observations:**
|
||||||
|
|
||||||
|
- When **too far**, the beam was unfocused, producing wide and burnt edges.
|
||||||
|
- When **too close**, the beam was concentrated but often failed to cut through fully.
|
||||||
|
- The **ideal distance** created precise, clean lines without burn marks.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
**Conclusion:**
|
||||||
|
The laser’s **focal point** plays a crucial role in cut quality. Proper Z-axis alignment ensures effective energy concentration, minimizing burns and maximizing precision.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
#### 📎 Add Barcode Below
|
||||||
|
📌 *Insert a QR code here that links directly to this documentation page on your website*
|
||||||
|
|
||||||
|
---
|
Loading…
x
Reference in New Issue
Block a user