espnow-rc-car/WORKING-CAR-CODE.ino
2025-03-23 17:01:13 +03:00

194 lines
4.2 KiB
C++

#include <Arduino.h>
#include "L298N_ESP32.h"
#include "Servo_ESP32.h"
// Motor 1 Pins
#define MOTOR1_PIN1 27
#define MOTOR1_PIN2 26
#define MOTOR1_ENABLE 14
// Motor 2 Pins
#define MOTOR2_PIN1 25
#define MOTOR2_PIN2 33
#define MOTOR2_ENABLE 32
// Servo Pins
#define SERVO1_PIN 13
#define SERVO2_PIN 12
// Motor Objects
L298N_ESP32 motor1(MOTOR1_PIN1, MOTOR1_PIN2, MOTOR1_ENABLE, 0);
L298N_ESP32 motor2(MOTOR2_PIN1, MOTOR2_PIN2, MOTOR2_ENABLE, 1);
// Servo Objects
Servo_ESP32 servo1(SERVO1_PIN, 2, 1000, 2000);
Servo_ESP32 servo2(SERVO2_PIN, 3, 1000, 2000);
// ESPNOW
#include <esp_now.h>
#include <WiFi.h>
// Packet Data Structure
struct PacketData {
uint8_t X; // Steering (left/right)
uint8_t Y; // Throttle (forward/backward)
bool B; // Button
};
// Data Received From Remote
PacketData data;
// Constants
const unsigned long MOTOR_ACTION_DELAY = 5000; // Delay between motor actions
const int SERVO1_START = 10;
const int SERVO1_END = 170;
const int SERVO2_START = 20;
const int SERVO2_END = 160;
enum MotorState {
STOPPED,
FORWARD_M1,
BACKWARD_M1,
FORWARD_M2,
BACKWARD_M2
};
MotorState currentMotorState = STOPPED;
unsigned long motorStateStartTime = 0;
void setup() {
Serial.begin(115200);
// Initialize Motors
motor1.begin();
motor2.begin();
// Initialize Servos
servo1.begin();
servo2.begin();
Serial.println("Initialization complete.");
// ESP-NOW setup
WiFi.mode(WIFI_STA);
if (esp_now_init() != ESP_OK) {
Serial.println("ESP-NOW init failed");
return;
}
// When Receive Data Execute OnDataRecv Function
esp_now_register_recv_cb(OnDataRecv);
}
void loop() {
// Non Blocking Motor control
if(millis() - motorStateStartTime >= MOTOR_ACTION_DELAY) {
motorStateStartTime = millis();
switch (currentMotorState) {
case STOPPED:
Serial.println("Moving motor 1 forward...");
motor1.forward();
motor1.setPercentage(75); //PWM set percentage
motor2.stop();
currentMotorState = FORWARD_M1;
break;
case FORWARD_M1:
Serial.println("Moving motor 1 backward...");
motor1.backward();
motor1.setPercentage(50); //PWM set percentage
motor2.stop();
currentMotorState = BACKWARD_M1;
break;
case BACKWARD_M1:
Serial.println("Moving motor 2 forward...");
motor1.stop();
motor2.forward();
motor2.setPercentage(25); //PWM set percentage
currentMotorState = FORWARD_M2;
break;
case FORWARD_M2:
Serial.println("Moving motor 2 backward...");
motor1.stop();
motor2.backward();
motor2.setPercentage(100); //PWM set percentage
currentMotorState = BACKWARD_M2;
break;
case BACKWARD_M2:
Serial.println("Stopping motors ...");
motor1.stop();
motor2.stop();
currentMotorState = STOPPED;
break;
}
}
//Non Blocking Servos
static unsigned long servoTimer = 0;
static int servo1Pos = SERVO1_START;
static int servo2Pos = SERVO2_START;
static bool servoForward = true;
unsigned long currentTime = millis();
if(currentTime - servoTimer >= 20) { // Adjust for speed
servoTimer = currentTime;
if (servoForward) {
servo1Pos++;
if (servo1Pos >= SERVO1_END) {
servoForward = false;
}
} else {
servo1Pos--;
if (servo1Pos <= SERVO1_START) {
servoForward = true;
}
}
servo1.write(servo1Pos);
}
//Non Blocking Servos
static unsigned long servoTimer2 = 0;
static int servo2Pos2 = SERVO2_START;
static bool servoForward2 = true;
unsigned long currentTime2 = millis();
if(currentTime2 - servoTimer2 >= 20) { // Adjust for speed
servoTimer2 = currentTime2;
if (servoForward2) {
servo2Pos2++;
if (servo2Pos2 >= SERVO2_END) {
servoForward2 = false;
}
} else {
servo2Pos2--;
if (servo2Pos2 <= SERVO2_START) {
servoForward2 = true;
}
}
servo2.write(servo2Pos2);
}
}
// ESP-NOW callback
void OnDataRecv(const esp_now_recv_info *info, const uint8_t *data, int len) {
if (len == sizeof(PacketData)) {
memcpy(&data, data, sizeof(PacketData));
}
}