{ "id": "HnqGW0eq5asKfZxf", "meta": { "instanceId": "03907a25f048377a8789a4332f28148522ba31ee907fababf704f1d88130b1b6", "templateCredsSetupCompleted": true }, "name": "🔍🛠️Perplexity Researcher to HTML Web Page", "tags": [], "nodes": [ { "id": "ad5d96c6-941a-4ab3-b349-10bae99e5988", "name": "Sticky Note", "type": "n8n-nodes-base.stickyNote", "position": [ 320, 1360 ], "parameters": { "color": 3, "width": 625.851492623043, "height": 465.2493344282225, "content": "## Create Article from Perplexity Research" }, "typeVersion": 1 }, { "id": "19b3ca66-5fd2-4d04-b25a-a17fb38642f8", "name": "Sticky Note1", "type": "n8n-nodes-base.stickyNote", "position": [ 1240, 1360 ], "parameters": { "color": 4, "width": 479.02028317328745, "height": 464.14912719677955, "content": "## Convert Article into HTML" }, "typeVersion": 1 }, { "id": "7fad54e8-5a50-42da-b38d-08f6912615ab", "name": "gpt-4o-mini", "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi", "position": [ 1380, 1660 ], "parameters": { "model": "gpt-4o-mini-2024-07-18", "options": { "responseFormat": "text" } }, "credentials": { "openAiApi": { "id": "h597GY4ZJQD47RQd", "name": "OpenAi account" } }, "typeVersion": 1 }, { "id": "5291869f-3ac6-4ce2-88f3-b572924b6082", "name": "gpt-4o-mini1", "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi", "position": [ 1560, 1040 ], "parameters": { "options": { "topP": 1, "timeout": 60000, "maxTokens": -1, "maxRetries": 2, "temperature": 0, "responseFormat": "text", "presencePenalty": 0, "frequencyPenalty": 0 } }, "credentials": { "openAiApi": { "id": "h597GY4ZJQD47RQd", "name": "OpenAi account" } }, "typeVersion": 1 }, { "id": "a232f6ca-ad4c-40fa-a641-f0dd83c8f18a", "name": "Structured Output Parser1", "type": "@n8n/n8n-nodes-langchain.outputParserStructured", "position": [ 640, 1660 ], "parameters": { "schemaType": "manual", "inputSchema": "{\n \"type\": \"object\",\n \"properties\": {\n \"article\": {\n \"type\": \"object\",\n \"required\": [\"category\", \"title\", \"metadata\", \"content\", \"hashtags\"],\n \"properties\": {\n \"category\": {\n \"type\": \"string\",\n \"description\": \"Article category\"\n },\n \"title\": {\n \"type\": \"string\",\n \"description\": \"Article title\"\n },\n \"metadata\": {\n \"type\": \"object\",\n \"properties\": {\n \"timePosted\": {\n \"type\": \"string\",\n \"description\": \"Time since article was posted\"\n },\n \"author\": {\n \"type\": \"string\",\n \"description\": \"Article author name\"\n },\n \"tag\": {\n \"type\": \"string\",\n \"description\": \"Article primary tag\"\n }\n },\n \"required\": [\"timePosted\", \"author\", \"tag\"]\n },\n \"content\": {\n \"type\": \"object\",\n \"properties\": {\n \"mainText\": {\n \"type\": \"string\",\n \"description\": \"Main article content\"\n },\n \"sections\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"title\": {\n \"type\": \"string\",\n \"description\": \"Section title\"\n },\n \"text\": {\n \"type\": \"string\",\n \"description\": \"Section content\"\n },\n \"quote\": {\n \"type\": \"string\",\n \"description\": \"Blockquote text\"\n }\n },\n \"required\": [\"title\", \"text\", \"quote\"]\n }\n }\n },\n \"required\": [\"mainText\", \"sections\"]\n },\n \"hashtags\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\"\n },\n \"description\": \"Article hashtags\"\n }\n }\n }\n }\n}" }, "typeVersion": 1.2 }, { "id": "e7d1adac-88aa-4f76-92bf-bbac3aa6386a", "name": "gpt-4o-mini2", "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi", "position": [ 420, 1660 ], "parameters": { "options": { "topP": 1, "timeout": 60000, "maxTokens": -1, "maxRetries": 2, "temperature": 0, "responseFormat": "json_object", "presencePenalty": 0, "frequencyPenalty": 0 } }, "credentials": { "openAiApi": { "id": "h597GY4ZJQD47RQd", "name": "OpenAi account" } }, "typeVersion": 1 }, { "id": "156e51db-03f7-4099-afe8-6f0361c5b497", "name": "Webhook", "type": "n8n-nodes-base.webhook", "position": [ 160, 860 ], "webhookId": "6a8e3ae7-02ae-4663-a27a-07df448550ab", "parameters": { "path": "pblog", "options": {}, "responseMode": "responseNode" }, "typeVersion": 2 }, { "id": "6dd3eba7-e779-4e4a-960e-c5a7b6b3a929", "name": "Respond to Webhook", "type": "n8n-nodes-base.respondToWebhook", "position": [ 2820, 1480 ], "parameters": { "options": {}, "respondWith": "text", "responseBody": "={{ $json.text }}" }, "typeVersion": 1.1 }, { "id": "27ee681e-4259-4323-b4fe-629f99cb33d0", "name": "Telegram", "type": "n8n-nodes-base.telegram", "position": [ 2320, 880 ], "parameters": { "text": "={{ $('Perplexity Topic Agent').item.json.output.slice(0, 300) }}", "chatId": "={{ $json.telegram_chat_id }}", "additionalFields": { "parse_mode": "HTML", "appendAttribution": false } }, "credentials": { "telegramApi": { "id": "BIE64nzfpGeesXUn", "name": "Telegram account" } }, "typeVersion": 1.2 }, { "id": "f437d40c-2bf6-43e2-b77b-e5c2cdc35055", "name": "gpt-4o-mini5", "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi", "position": [ 2480, 1660 ], "parameters": { "options": { "topP": 1, "timeout": 60000, "maxTokens": -1, "maxRetries": 2, "temperature": 0, "responseFormat": "text", "presencePenalty": 0, "frequencyPenalty": 0 } }, "credentials": { "openAiApi": { "id": "h597GY4ZJQD47RQd", "name": "OpenAi account" } }, "typeVersion": 1 }, { "id": "275bce4a-4252-41d4-bcba-174f0c51bf4a", "name": "Basic LLM Chain", "type": "@n8n/n8n-nodes-langchain.chainLlm", "position": [ 2340, 1480 ], "parameters": { "text": "=Create a modern, responsive single-line HTML document. Convert any markdown to Tailwind CSS classes. Replace markdown lists with proper HTML list elements. Remove all newline characters while preserving tags in content. Enhance the layout with Tailwind CSS cards where appropriate. Use the following base structure, but improve the styling and responsiveness:\n\n\n\n\n
\n \n \nTime Posted: Just now
\nAuthor: AI Research Team
\nTag: AI Models
\nDeepSeek V3 is a state-of-the-art AI model that leverages\n advanced architectures and techniques to deliver high performance across various applications.\n This overview covers its key concepts, practical applications, advantages, limitations, and best\n practices for implementation.
\n1. Mixture-of-Experts (MoE) Architecture: DeepSeek V3\n employs a Mixture-of-Experts (MoE) architecture, which consists of multiple neural networks,\n each optimized for different tasks. This architecture allows for efficient processing by\n activating only a portion of the network for each task, reducing hardware costs.
\n2. Parameters: The model boasts a total of 671\n billion\n parameters, with 37 billion active parameters for each token during processing. The addition\n of\n the Multi-Token Prediction (MTP) module increases the total parameters to 685 billion,\n making it\n significantly larger than other models like Meta's Llama 3.1 (405B).
\n3. Multi-head Latent Attention (MLA): DeepSeek V3\n uses\n Multi-head Latent Attention (MLA) to extract key details from text multiple times, improving\n its\n accuracy.
\n4. Multi-Token Prediction (MTP): The model utilizes\n Multi-Token Prediction to generate several tokens at once, speeding up inference and\n enabling\n speculative decoding.
\n\n DeepSeek V3 employs a Mixture-of-Experts architecture for efficient processing.\n
\n DeepSeek V3 democratizes AI access for smaller organizations.\n
\n DeepSeek V3 processes information at 60 tokens per second.\n
\n Deployment of DeepSeek V3 may be complex for small companies.\n
\n Engage with the open-source community for better implementation.\n
Hashtags: #DeepSeekV3 #AI #MachineLearning #OpenSource
\n